Optimizing Solar Power Using Array Topology Reconfiguration With Regularized Deep Neural Networks

نویسندگان

چکیده

Reconfiguring photovoltaic (PV) array connections among different topologies such as series-parallel, bridge-link, honeycomb, or total-cross-tied is a popular strategy to mitigate impediments in power production caused by partial shading. Conventional approaches rely on either by-passing replacing shaded modules with auxiliary panels through complex control mechanisms, optimization strategies, simulator driven obtain the best topology. However, these solutions are not scalable and incur significant installation costs computational overhead, motivating need develop ‘smart’ methods for topology reconfiguration. To this end, we propose regularized neural network based algorithm that leverages panel-level sensor data reconfigure maximizes output under arbitrary shading conditions. Based our simulations include wiring losses configurations, observe improvement of up 11% The proposed can be easily integrated any cyber-physical PV system reconfiguration capabilities scalable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manifold regularized deep neural networks

Deep neural networks (DNNs) have been successfully applied to a variety of automatic speech recognition (ASR) tasks, both in discriminative feature extraction and hybrid acoustic modeling scenarios. The development of improved loss functions and regularization approaches have resulted in consistent reductions in ASR word error rates (WERs). This paper presents a manifold learning based regulari...

متن کامل

Distribution Systems Reconfiguration Using Pattern Recognizer Neural Networks

A novel intelligent neural optimizer with two objective functions is designed for electrical distribution systems. The presented method is faster than alternative optimization methods and is comparable with the most powerful and precise ones. This optimizer is much smaller than similar neural systems. In this work, two intelligent estimators are designed, a load flow program is coded, and a spe...

متن کامل

Manifold Regularized Deep Neural Networks using Adversarial Examples

Learning meaningful representations using deep neural networks involves designing efficient training schemes and well-structured networks. Currently, the method of stochastic gradient descent that has a momentum with dropout is one of the most popular training protocols. Based on that, more advanced methods (i.e., Maxout and Batch Normalization) have been proposed in recent years, but most stil...

متن کامل

BitNet: Bit-Regularized Deep Neural Networks

We present a novel regularization scheme for training deep neural networks. The parameters of neural networks are usually unconstrained and have a dynamic range dispersed over the real line. Our key idea is to control the expressive power of the network by dynamically quantizing the range and set of values that the parameters can take. We formulate this idea using a novel end-to-end approach th...

متن کامل

Taxonomy-Regularized Semantic Deep Convolutional Neural Networks

We propose a novel convolutional network architecture that abstracts and differentiates the categories based on a given class hierarchy. We exploit grouped and discriminative information provided by the taxonomy, by focusing on the general and specific components that comprise each category, through the minand difference-pooling operations. Without using any additional parameters or substantial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2023

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2023.3238400